
Inheritance and Overloading in Agda

Paolo Capriotti

3 June 2013

Abstract

One of the challenges of the formalization of mathematics in a proof
assistant is defining things in such a way that the syntax resembles the
usual informal mathematical notation as much as possible.

I present a collection of techniques that make it possible to obtain a
reasonably compact notation in an Agda implementation of basic algebra
and category theory.

Although the solution is not completely satisfactory by itself, it shows
how the current feature set of a language like Agda could be enhanced
in order to solve the problem completely, and that the extensions needed
would be minimal.

Introduction
Informal mathematical notation is full of abuses and clever syntactical conven-
tions. We write ◦ for the composition in any category, we apply things like
functors and natural transformations to their arguments, even though they are
not strictly functions, and we use all the notation and results for monoids when
we are talking about groups.

When formalizing mathematics in a proof checker like Agda, however, we
need to be a little more careful. As in a given scope, there can only be one
definition for a given name of symbol, we need to employ some cleverness if we
want to replicate the flexibility that the informal notation allows.

The crudest solution is to just use different names for different things. Al-
though this doesn’t sound like a bad principle at first, it becomes unweildy
pretty quickly. We would need different symbols for operations on natural num-
bers, integers, rationals. For every new category or group that we define, we
would need to come up with names for its operations.

Modules
Fortunately, Agda comes with a remarkably powerful module system. By di-
viding groups of related definitions into modules, we can then reuse the same
names for different definitions. Since every record is also a module, we can, for

example, define a record Category with all the structure that defines what a
category is:

record Category : Set1 where
field

obj : Set
hom : obj → obj → Set
id : (x : obj) → hom x x
◦ : {x y z : obj} → hom y z → hom x y → hom x z

– laws, etc...

and then just open it when we need it:

open Category C
id-id : (x : obj) → id x ◦ id x ≡ id x

Unfortunately, sometimes we need to deal with more than one category at
a time. For example, to define the notion of functor, we need at least two. We
cannot simply open the module twice, of course, so we are forced to choose:
either we qualify everything explicitly, or we use the renaming feature of Agda,
and pick new names for every definition that would appear twice.

Explicit qualification is really awkward and makes for completely unreadable
code. For example:

(f : Category.hom C x y) → Category._◦_ C f (Category.id C x) ≡ f

is the type of the left identity law for a category. This is not really a viable
solution.

So the only choice we have left is to rename duplicate definitions. Here is
how a definition of Functor would look like:

record Functor (C D : Category) : Set where
open Category C renaming

(obj to objC –
; hom to homC)
– etc...

open Category D renaming
(obj to objD –
; hom to homD)
– etc...

field
apply : objC → objD
map : {x y : objC} → homC x y → homD (apply x) (apply y)
– etc...

This is not too bad, and in fact some existing category theory libraries for
Agda, like for example [1] do indeed use this approach.

Unfortunately, this is still very far from a satisfactory overloading mecha-
nism, as it requires enormous amounts of boilerplate code on every usage of
overloaded definitions, it’s error prone, and still much more noisy than the cor-
responding informal notation, even ignoring the renaming boilerplate.

Instance arguments
Since version 2.3.0, Agda provides a feature which is specifically designed to
make real overloading of names possible: instance arguments ([4]).

Instance arguments are similar to implicit arguments: when an argument of
a function is marked as “instance”, it doesn’t need to be given, and is going to
be automatically inferred at the function call site.

The strategy for inference of instance arguments, however, differs from the
one used for implicit arguments. While the latter is based on unification, the
former searches for possible candidates in scope, and succeeds if it finds exactly
one.

Syntactically, instance arguments are enclosed in double curly braces.
With instance arguments in hand, we can now solve the overloading problem

more effectively. If we mark the Category argument of each field of our record
above as an instance argument, we can open the record only once, and Agda
will automatically fill in the correct category from the scope, without us having
to qualify it explicitly.

There is even a special syntax for that:

open Category {{ ... }} hiding (obj)
open Category using (obj)

will simultaneously open the Category module and mark the Category ar-
gument of each of the fields as an instance argument. We refrain from using
instance arguments for the obj field, as without the Category argument, it’s
likely to be often ambiguous, and obj C is an acceptable notation already.

Now we can write, for example:

id-id : (x : obj C)(y : obj D) → id x ◦ id x ≡ id x

where the object y of the category D doesn’t play any role, but it’s included
to show that this also works when multiple categories are in scope.

Implementing hierarchies
Using instance arguments directly as in the previous section is a good enough
solution for simple cases, but in practice, things are a bit more involved.

In particular, in a formalization of algebra or category theory, concepts are
organised into a hierarchy: sets, monoids, groups, abelian groups, rings, etc.
are not completely independent entities, but each is, in some sense, a subtype
of the previous one.

Agda doesn’t have built-in support for subtyping, but we can encode the
first three levels, for example, with something like:

record IsMonoid (X : Set) : Set where
field

unit : X
* : X → X → X
– laws...

Monoid : Set1
Monoid = Σ Set IsMonoid

mon-carrier : Monoid → Set
mon-carrier = proj1

open IsMonoid {{ ... }} public

record IsGroup (M : Monoid) : Set where
private

X = mon-carrier M
is-mon = proj2 M – this must be in scope for

– the following to type-check
field

inv : X → X
left-inv : (x : X) → inv x * x ≡ unit

Group : Set1
Group = Σ Monoid IsGroup

grp-carrier : Group → Set
grp-carrier G = mon-carrier (proj1 G)

open IsGroup {{ ... }} public

We could inline the definition of IsMonoid into the Monoid record (and
similarly IsGroup into Group), but keeping them separate has many benefits,
as I will show later.

Enabler interfaces
Whenever records containing overloaded definitions (which I will refer to as
instance records) are organised into a hierarchy, they are usually not readily
available in a scope, so they need to be explicitly extracted, as in the definition
of IsGroup above.

The situation is even worse than that, when multiple levels are involved. For
example, to use the full structure of a group G we need to write something like:

is-grp = proj2 G
is-mon = proj2 (proj1 G)

and in general, we need a number of statements equal to how many levels
deep we need to dig into the hierarchy to find all the definitions that we need.

One solution is to package all these statements into a single module per type,
which I refer to as the enabler for that type:

module mon-enabler (M : Monoid) where
mon-instance = proj2 M

module grp-enabler (G : Group) where
open mon-enabler (proj1 G) public
grp-instance = proj2 G

This still requires some boilerplate, but now it is almost entirely on the defi-
nition side. The client code can just open the top-level enabler and immediately
gain access to the full interface, including definitions in super-types.

Furthermore, the code size of a single enabler is now constant, rather than
linear, because we can define new enablers “recursively” over previously defined
ones, for example:

record IsCommutative (M : Monoid) : Set where
open mon-enabler M
field

comm : (x y : mon-carrier M) → x * y ≡ y * x

CommMonoid : Set1
CommMonoid = Σ Monoid IsCommutative

AbGroup : Set1
AbGroup = Σ Group (ń G → IsCommutative (proj1 G))

module cmon-enabler (M : CommMonoid) where
open mon-enabler (proj1 M) public
cmon-instance = proj2 M

module abg-enabler (A : AbGroup) where
open grp-enabler (proj1 A) public
abg-instance = proj2 A

Incidentally, this code also shows why it’s beneficial to separate the definition
for a new concept X into IsX and X proper: we can easily reuse the IsX records
to create parallel hierarchies with minimal code duplication.

Coercions and static methods
Although definitions contained in all the instance records of an inheritance chain
can now be accessed very easily just by opening the appropriate enabler module,
there is still no way to create new definitions in such a way that they can be
shared by all super-types.

If we prove a theorem about monoids, like for example:

left-right-unit : {M : Monoid}(x : mon-carrier M)
→ let open mon-enabler M
in unit * x ≡ x * unit

we might want to apply it to groups, abelian groups, etc.
So we define all possible coercions to Monoid:

mon-is-mon : Monoid → Monoid
mon-is-mon M = M – trivial coercion

grp-is-mon : Group → Monoid
grp-is-mon = proj1

cmon-is-mon : CommMonoid → Monoid
cmon-is-mon = proj1

abg-is-mon : AbGroup → Monoid
abg-is-mon A = proj1 (proj1 A)

then, using instance methods again, we can easily define functions that work
for any subtype of Monoid:

module monoid-static
{Source : Set1}
{{ c : Source → Monoid }}
(source : Source)
where

private M = c source
open mon-enabler M

carrier : Set
carrier = mon-carrier M

left-right-unit : (x : carrier) → unit * x ≡ x * unit
– etc...

open monoid-static public

I call such definitions static methods, because they behave similarly to static
methods in object oriented languages. By contrast, we refer to definitions ap-
pearing in some instance record as instance methods.

We can even turn enabler modules into static methods:

module as-monoid
{Source : Set1}
{{ c : Source → Monoid }}
(source : Source)
where

private M = c source
mon-instance = proj2 M

Now we can enable Monoid methods for any superclass of it:

module example (A : AbGroup) where
open as-monoid A
– we can use _*_ and unit for A here

Unfortunately, coercions to all super-types need to be defined manually for
each type in the hierarchy. There does not seem to be way to alleviate this
problem with instance arguments, as the instance search is limited to the current
scope, and cannot combine instances in any way.

Potentially, a code generator or some kind of macro system could be used
to generate coercions automatically. The transitive closure of coercions from
Σ X isY to X could be generated this way, and any other desired coercion could
be added manually.

Implementation
The agda-base library ([2]) contains an implementation of the inheritance and
overloading patterns described in this paper.

The library code employs some extra tricks, like wrapping instance records
and coercions into specialized data types.

The data type for instance records is called Styled and has a phantom
parameter style, which can be used to implement alternative notations for in-
stance methods. For example, besides the usual monoid enabler for the default
style, one can define a secondary enabler for monoids, exposing an instance
record with an additive style parameter.

Therefore, the user can select the notation to use by opening the correspond-
ing enabler, without having to define additional monoid instances, or perform
any renaming of definitions.

Unfortunately, the implementation presents some performance issues during
type-checking, probably related to the interaction between instance search and
unification of universe levels, as some of the instance definitions (like the one
for composition) contain a large number of level meta-variables.

Conclusion and future work
I showed how Agda’s instance records can be used to implement hierarchies of
data types with overloaded methods.

Although I was mainly focused on the formalization of hierarchies of alge-
braic or categorical structures, the techniques exemplified here should be also
applicable to the domains where object oriented design is usually employed.

The solution is not completely satisfactory, as it requires relatively large
amounts of boilerplate code, and it makes type-checking quite slow when com-
bined with universe polymorphism.

However, boilerplate code is limited to data type definitions, whereas the
client code looks clean and very close to informal mathematical notation. Fur-
thermore, it is relatively easy to see how the boilerplate generation could be
automated or integrated in the language.

I have only dealt with Agda, here, but similar considerations should be true
for other implementations of type theory.

The Coq proof assistant, for example, provides built-in support for coercions
([3]), and provides a type class construct ([5]), which subsumes instance records
and enablers. It is likely that those features would make it possible to achieve
comparable (or even better) expressiveness in Coq with minimal amounts of
boilerplate.

However, Coq’s features feel much less minimalistic. In particular, the in-
stance search employs not very well-specified heuristics, and thus is not as pre-
dictable as Agda’s.

I feel the ideas presented in this paper show there is a sweet spot in the
design space of instance search and implicit coercion features that has not yet
been implemented, and that it lies not very far from the current capabilities of
the Agda system.

Investigating in more detail and possibly implementing this sweet spot is the
subject of future work.

References
[1] https://github.com/copumpkin/categories.

[2] https://github.com/pcapriotti/agda-base.

[3] http://coq.inria.fr/distrib/current/refman/
Reference-Manual021.html#Coercions-full.

[4] Dominique Devriese and Frank Piessens. On the bright side of type classes:
instance arguments in agda. In ICFP, pages 143–155, 2011.

[5] Matthieu Sozeau and Oury Nicolas. First-Class Type Classes.

https://github.com/copumpkin/categories
https://github.com/pcapriotti/agda-base
http://coq.inria.fr/distrib/current/refman/Reference-Manual021.html#Coercions-full
http://coq.inria.fr/distrib/current/refman/Reference-Manual021.html#Coercions-full

