{-# OPTIONS --without-K #-}

module function.isomorphism.utils where

open import level
open import sum
open import equality.core
open import equality.calculus
open import function.core
open import function.overloading
open import function.isomorphism.core
open import function.isomorphism.coherent
open import function.extensionality.proof
open import sets.nat.core
open import sets.unit
open import sets.empty
open import sets.fin.core
open import hott.level.core

Σ-split-iso :  {i j}{X : Set i}{Y : X  Set j}
             {a a' : X}{b : Y a}{b' : Y a'}
             (Σ (a  a') λ q  subst Y q b  b')
             ((a , b)  (a' , b'))
Σ-split-iso {Y = Y}{a}{a'}{b}{b'} = iso unapΣ apΣ H K
  where
    H :  {a a'}{b : Y a}{b' : Y a'}
       (p : Σ (a  a') λ q  subst Y q b  b')
       apΣ (unapΣ {a = a}{a' = a'}{b = b}{b' = b'} p)  p
    H (refl , refl) = refl

    K : (p : (a , b)  (a' , b'))  unapΣ (apΣ p)  p
    K = J  u v p  unapΣ (apΣ p)  p)
           {(a , b)  refl })
          (a , b) (a' , b')

×-split-iso :  {i j}{X : Set i}{Y : Set j}
             {a a' : X}{b b' : Y}
             ((a  a') × (b  b'))
             ((a , b)  (a' , b'))
×-split-iso {X = X}{Y} = record
  { to = λ { (p , q)  ap₂ _,_ p q }
  ; from = λ { p  (ap proj₁ p , ap proj₂ p) }
  ; iso₁ = λ { (p , q)  H p q }
  ; iso₂ = K }
  where
    H : {a a' : X}{b b' : Y}(p : a  a')(q : b  b')
       (ap proj₁ (ap₂ _,_ p q), ap proj₂ (ap₂ _,_ p q))  (p , q)
    H refl refl = refl

    K : {a a' : X}{b b' : Y}(p : (a , b)  (a' , b'))
       ap₂ _,_ (ap proj₁ p) (ap proj₂ p)  p
    K refl = refl

×-ap-iso :  {i i' j j'}{X : Set i}{X' : Set i'}
             {Y : Set j}{Y' : Set j'}
            (isom : X  X')
            (isom' : Y  Y')
            (X × Y)  (X' × Y')
×-ap-iso isom isom' = record
  { to = λ { (x , y)  (apply isom x , apply isom' y) }
  ; from = λ { (x' , y')  (invert isom x' , invert isom' y') }
  ; iso₁ = λ { (x , y)  pair≡ (_≅_.iso₁ isom x) (_≅_.iso₁ isom' y) }
  ; iso₂ = λ { (x' , y')  pair≡ (_≅_.iso₂ isom x') (_≅_.iso₂ isom' y') } }

→-ap-iso :  {i i' j j'}{X : Set i}{X' : Set i'}
             {Y : Set j}{Y' : Set j'}
            X  X'  Y  Y'
            (X  Y)  (X'  Y')
→-ap-iso φ ψ = record
  { to = λ u x'  apply≅ ψ (u (invert≅ φ x'))
  ; from = λ u' x  invert≅ ψ (u' (apply≅ φ x))
  ; iso₁ = λ u  funext λ x  ap (invert≅ ψ  apply≅ ψ  u) (_≅_.iso₁ φ x)
                            · _≅_.iso₁ ψ (u x)
  ; iso₂ = λ u'  funext λ x'  ap (apply≅ ψ  invert≅ ψ  u') (_≅_.iso₂ φ x')
                              · _≅_.iso₂ ψ (u' x') }

Σ-ap-iso₂ :  {i j j'}{X : Set i}
           {Y : X  Set j}{Y' : X  Set j'}
           ((x : X)  Y x  Y' x)
           Σ X Y  Σ X Y'
Σ-ap-iso₂ {X = X}{Y}{Y'} isom = record
  { to = λ { (x , y)  (x , apply (isom x) y) }
  ; from = λ { (x , y')  (x , invert (isom x) y') }
  ; iso₁ = λ { (x , y)  unapΣ (refl , _≅_.iso₁ (isom x) y) }
  ; iso₂ = λ { (x , y')  unapΣ (refl , _≅_.iso₂ (isom x) y') } }

Σ-ap-iso₁ :  {i i' j}{X : Set i}{X' : Set i'}{Y : X'  Set j}
           (isom : X  X')
           Σ X (Y  apply isom)  Σ X' Y
Σ-ap-iso₁ {X = X}{X'}{Y} isom = record
  { to = λ { (x , y)  (f x , y) }
  ; from = λ { (x , y)  (g x , subst Y (sym (K x)) y) }
  ; iso₁ = λ { (x , y)  unapΣ (H x ,
           subst-naturality Y f (H x) _
         · (subst-hom Y (sym (K (f x))) (ap f (H x)) y
         · ap  p  subst Y p y) (lem x) ) ) }
  ; iso₂ = λ { (x , y)  unapΣ (K x ,
           subst-hom Y (sym (K x)) (K x) y
         · ap  p  subst Y p y) (right-inverse (K x)) ) } }
  where
    isom-c = ≅⇒≅' isom
    γ = proj₂ isom-c
    open _≅_ (proj₁ isom-c)
      renaming ( to to f ; from to g
               ; iso₁ to H; iso₂ to K )

    lem : (x : X)  sym (K (f x)) · ap f (H x)  refl
    lem x = ap  z  sym (K (f x)) · z) (γ x)
          · right-inverse (K (f x))

Σ-ap-iso :  {i i' j j'}{X : Set i}{X' : Set i'}
           {Y : X  Set j}{Y' : X'  Set j'}
          (isom : X  X')
          ((x : X)  Y x  Y' (apply isom x))
          Σ X Y  Σ X' Y'
Σ-ap-iso {X = X}{X'}{Y}{Y'} isom isom' = trans≅
  (Σ-ap-iso₂ isom') (Σ-ap-iso₁ isom)

Σ-ap-iso' :  {i i' j j'}{X : Set i}{X' : Set i'}
            {Y : X  Set j}{Y' : X'  Set j'}
           (isom : X  X')
           ((x : X')  Y (invert isom x)  Y' x)
           Σ X Y  Σ X' Y'
Σ-ap-iso' {X = X}{X'}{Y}{Y'} isom isom'
  = sym≅ (Σ-ap-iso (sym≅ isom)  x  sym≅ (isom' x)))

Π-ap-iso :  {i i' j j'}{X : Set i}{X' : Set i'}
             {Y : X  Set j}{Y' : X'  Set j'}
            (isom : X  X')
            ((x' : X')  Y (invert isom x')  Y' x')
            ((x : X)  Y x)
            ((x' : X')  Y' x')
Π-ap-iso {X = X}{X'}{Y}{Y'} isom isom' =
  trans≅ (Π-iso (≅⇒≅' isom)) (Π-iso' isom')
  where
    Π-iso : (isom : X ≅' X')
           ((x : X)  Y x)
           ((x' : X')  Y (invert (proj₁ isom) x'))
    Π-iso (iso f g H K , γ) = record
      { to = λ h x'  h (g x')
      ; from = λ h' x  subst Y (H x) (h' (f x))
      ; iso₁ = λ h  funext λ x  ap' h (H x)
      ; iso₂ = λ h'  funext λ x' 
              ap  p  subst Y p _) (sym (γ' x'))
            · sym (subst-naturality Y g (K x') _)
            · ap' h' (K x') }
      where γ' = co-coherence (iso f g H K) γ

    Π-iso' :  {i j j'}{X : Set i}
             {Y : X  Set j}{Y' : X  Set j'}
            ((x : X)  Y x  Y' x)
            ((x : X)  Y x)
            ((x : X)  Y' x)
    Π-iso' isom = record
      { to = λ h x  apply (isom x) (h x)
      ; from = λ h' x  invert (isom x) (h' x)
      ; iso₁ = λ h  funext λ x  _≅_.iso₁ (isom x) _
      ; iso₂ = λ h'  funext λ x  _≅_.iso₂ (isom x) _ }

ΠΣ-swap-iso :  {i j k}{X : Set i}{Y : X  Set j}
             {Z : (x : X)  Y x  Set k}
             ((x : X)  Σ (Y x) λ y  Z x y)
             (Σ ((x : X)  Y x) λ f  ((x : X)  Z x (f x)))
ΠΣ-swap-iso = record
  { to = λ f  (proj₁ ∘' f , proj₂ ∘' f)
  ; from = λ { (f , g) x  (f x , g x) }
  ; iso₁ = λ _  refl
  ; iso₂ = λ _  refl }

curry-iso :  {i j k}{X : Set i}{Y : X  Set j}
            (Z : (x : X)  Y x  Set k)
           ((xy : Σ X Y)  Z (proj₁ xy) (proj₂ xy))
           ((x : X)  (y : Y x)  Z x y)
curry-iso _ = record
  { to = λ f x y  f (x , y)
  ; from = λ { f (x , y)  f x y }
  ; iso₁ = λ _  refl
  ; iso₂ = λ _  refl }

Π-comm-iso :  {i j k}{X : Set i}{Y : Set j}{Z : X  Y  Set k}
            ((x : X)(y : Y)  Z x y)
            ((y : Y)(x : X)  Z x y)
Π-comm-iso = record
  { to = λ f y x  f x y
  ; from = λ f x y  f y x
  ; iso₁ = λ _  refl
  ; iso₂ = λ _  refl }

Σ-comm-iso :  {i j k}{X : Set i}{Y : Set j}{Z : X  Y  Set k}
            (Σ X λ x  Σ Y λ y  Z x y)
            (Σ Y λ y  Σ X λ x  Z x y)
Σ-comm-iso = record
  { to = λ { (x , y , z)  (y , x , z) }
  ; from = λ { (y , x , z)  (x , y , z) }
  ; iso₁ = λ _  refl
  ; iso₂ = λ _  refl }

impl-iso :  {i j}{X : Set i}{Y : X  Set j}
          ((x : X)  Y x)  ({x : X}  Y x)
impl-iso = record
  { to = λ f  f _
  ; from = λ f _  f
  ; iso₁ = λ _  refl
  ; iso₂ = λ _  refl }

Σ-assoc-iso :  {i j k}
              {X : Set i}{Y : X  Set j}
              {Z : (x : X)  Y x  Set k}
             Σ (Σ X Y)  {(x , y)  Z x y})
             Σ X λ x  Σ (Y x) (Z x)
Σ-assoc-iso = record
  { to = λ {((x , y) , z)  (x , y , z) }
  ; from = λ {(x , y , z)  ((x , y) , z) }
  ; iso₁ = λ _  refl
  ; iso₂ = λ _  refl }

⊎-Σ-iso :  {i}(X : Fin 2  Set i)
         (X zero  X (suc zero))
         Σ (Fin 2) X
⊎-Σ-iso X = record
  { to = λ { (inj₁ x)  zero , x
           ; (inj₂ x)  suc zero , x }
  ; from = λ { (zero , x)  inj₁ x
             ; (suc zero , x)  inj₂ x
             ; (suc (suc ()) , _) }
  ; iso₁ = λ { (inj₁ x)  refl
             ; (inj₂ x)  refl }
  ; iso₂ = λ { (zero , x)  refl
             ; (suc zero , x)  refl
             ; (suc (suc ()) , _) } }

⊎-ap-iso :  {i j i' j'}
          {X : Set i}{X' : Set i'}
          {Y : Set j}{Y' : Set j'}
          X  X'
          Y  Y'
          (X  Y)  (X'  Y')
⊎-ap-iso (iso f g α β) (iso f' g' α' β') = record
  { to = λ { (inj₁ x)  inj₁ (f x) ; (inj₂ y)  inj₂ (f' y) }
  ; from = λ { (inj₁ x)  inj₁ (g x) ; (inj₂ y)  inj₂ (g' y) }
  ; iso₁ = λ { (inj₁ x)  ap inj₁ (α x) ; (inj₂ y)  ap inj₂ (α' y) }
  ; iso₂ = λ { (inj₁ x)  ap inj₁ (β x) ; (inj₂ y)  ap inj₂ (β' y) } }

⊎-assoc-iso :  {i j k}
             {X : Set i}{Y : Set j}{Z : Set k}
             ((X  Y)  Z)
             (X  (Y  Z))
⊎-assoc-iso = record
  { to = λ { (inj₁ (inj₁ x))  inj₁ x
           ; (inj₁ (inj₂ y))  inj₂ (inj₁ y)
           ; (inj₂ z)  inj₂ (inj₂ z) }
  ; from = λ { (inj₁ x)  inj₁ (inj₁ x)
             ; (inj₂ (inj₁ y))  inj₁ (inj₂ y)
             ; (inj₂ (inj₂ z))  inj₂ z }
  ; iso₁ = λ { (inj₁ (inj₁ x))  refl
             ; (inj₁ (inj₂ y))  refl
             ; (inj₂ z)  refl }
  ; iso₂ = λ { (inj₁ x)  refl
             ; (inj₂ (inj₁ y))  refl
             ; (inj₂ (inj₂ z))  refl } }

⊎×-distr-iso :  {i j k}
              {X : Set i}{Y : Set j}{Z : Set k}
              ((X  Y) × Z)
              ((X × Z)  (Y × Z))
⊎×-distr-iso = record
  { to = λ { (inj₁ x , z)  inj₁ (x , z)
           ; (inj₂ y , z)  inj₂ (y , z) }
  ; from = λ { (inj₁ (x , z))  inj₁ x , z
             ; (inj₂ (y , z))  inj₂ y , z }
  ; iso₁ = λ { (inj₁ x , z)  refl
             ; (inj₂ y , z)  refl }
  ; iso₂ = λ { (inj₁ (x , z))  refl
             ; (inj₂ (y , z))  refl } }

⊎-universal :  {i j k}{X : Set i}{Y : Set j}
             {Z : X  Y  Set k}
             ((u : X  Y)  Z u)
             (((x : X)  Z (inj₁ x)) × ((y : Y)  Z (inj₂ y)))
⊎-universal = record
  { to = λ f  (f ∘' inj₁ , f ∘' inj₂)
  ; from = λ { (g₁ , g₂) (inj₁ x)  g₁ x
             ; (g₁ , g₂) (inj₂ y)  g₂ y }
  ; iso₁ = λ f  funext λ
      { (inj₁ x)  refl
      ; (inj₂ x)  refl }
  ; iso₂ = λ { (g₁ , g₂)  refl } }

×-left-unit :  {i j}{X : Set i}  ( {j} × X)  X
×-left-unit = record
  { to = λ {(tt , x)  x }
  ; from = λ x  tt , x
  ; iso₁ = λ _  refl
  ; iso₂ = λ _  refl }

×-right-unit :  {i j}{X : Set i}  (X ×  {j})  X
×-right-unit = record
  { to = λ {(x , tt)  x }
  ; from = λ x  x , tt
  ; iso₁ = λ _  refl
  ; iso₂ = λ _  refl }

contr-⊤-iso :  {i}{X : Set i}
             contr X  X   {lzero}
contr-⊤-iso hX = record
  { to = λ x  tt
  ; from = λ { tt  proj₁ hX }
  ; iso₁ = λ x  proj₂ hX x
  ; iso₂ = λ { tt  refl } }

empty-⊥-iso :  {i}{X : Set i}  ¬ X  X   {lzero}
empty-⊥-iso u = record
  { to = u
  ; from = ⊥-elim
  ; iso₁ = λ x  ⊥-elim (u x)
  ; iso₂ = λ () }

×-comm :  {i j}{X : Set i}{Y : Set j}
        (X × Y)  (Y × X)
×-comm = record
  { to = λ {(x , y)  (y , x)}
  ; from = λ {(y , x)  (x , y)}
  ; iso₁ = λ _  refl
  ; iso₂ = λ _  refl }

Π-left-unit :  {i j}{X : Set i}
             ( {j}  X)  X
Π-left-unit = record
  { to = λ f  f tt
  ; from = λ x _  x
  ; iso₁ = λ _  refl
  ; iso₂ = λ f  refl }

-- rewriting lemmas for equations on equalities
sym≡-iso :  {i}{X : Set i}(x y : X)
          (x  y)
          (y  x)
sym≡-iso _ _ = iso sym sym double-inverse double-inverse

trans≡-iso :  {i}{X : Set i}{x y z : X}
            (x  y)
            (y  z)  (x  z)
trans≡-iso p = record
  { to = λ q  p · q
  ; from = λ q  sym p · q
  ; iso₁ = λ q  sym (associativity (sym p) p q)
                · ap  z  z · q) (right-inverse p)
  ; iso₂ = λ q  sym (associativity p (sym p) q)
                · ap  z  z · q) (left-inverse p) }

trans≡-iso' :  {i}{X : Set i}{x y z : X}
             (y  z)
             (x  y)  (x  z)
trans≡-iso' q = record
  { to = λ p  p · q
  ; from = λ p  p · sym q
  ; iso₁ = λ p  associativity p q (sym q)
               · ap (_·_ p) (left-inverse q)
               · left-unit p
  ; iso₂ = λ p  associativity p (sym q) q
               · (ap (_·_ p) (right-inverse q)
               · left-unit p) }

move-≡-iso :  {i}{X : Set i}{x y z : X}
            (p : x  y)(q : y  z)(r : x  z)
            (p · q  r)
            (sym p · r  q)
move-≡-iso refl = sym≡-iso

J-iso :  {i j}{X : Set i}{x : X}
       {P : (y : X)  x  y  Set j}
       P x refl
       ((y : X)(p : x  y)  P y p)
J-iso {X = X}{x}{P} = record
  { to = J' P
  ; from = λ u  u x refl
  ; iso₁ = λ _  refl
  ; iso₂ = λ u  funext λ y  funext λ p  β u y p }
  where
    β : (u : (y : X)(p : x  y)  P y p)
       (y : X)(p : x  y)
       J' P (u x refl) y p  u y p
    β u .x refl = refl

subtype-equality :  {i j}{X : Set i}{Y : X  Set j}
                  ((x : X)  h 1 (Y x))
                  {x : X}{y : Y x}
                  {x' : X}{y' : Y x'}
                  (x  x')
                  _≡_ {A = Σ X Y} (x , y) (x' , y')
subtype-equality {X = X}{Y} hY {x}{y}{x'}{y'} =
  sym≅ ( Σ-ap-iso refl≅  _  contr-⊤-iso (hY _ _ _))
        ·≅ ×-right-unit) ·≅ Σ-split-iso
  -- where

  --   f : {x x' : X}{y : Y x}{y' : Y x'}
  --     → (x ≡ x') → _≡_ {A = Σ X Y} (x , y) (x' , y')
  --   f {x} refl = ap (λ u → (x , u)) (h1⇒prop (hY x) _ _)

  --   g : {x x' : X}{y : Y x}{y' : Y x'}
  --     → _≡_ {A = Σ X Y} (x , y) (x' , y')
  --     → x ≡ x'
  --   g = ap proj₁