{-# OPTIONS --without-K #-}
module hott.equivalence.core where

open import equality.core using (_≡_ ; refl ; ap)
open import sum using (Σ ; proj₁ ; proj₂ ; _,_)
open import level using (_⊔_)
open import hott.level.core using (contr ; prop ; _⁻¹_)
open import function.core using (_$_)
open import function.isomorphism.core using (_≅_ ; iso)

-- a function is a weak equivalence, if the inverse images of all points are contractible
weak-equiv :  {i k} {X : Set i} {Y : Set k} (f : X  Y)  Set (i  k)
weak-equiv {_} {_} {X} {Y} f = (y : Y)  contr $ f ⁻¹ y

-- weak equivalences
_≈_ :  {i j} (X : Set i) (Y : Set j)  Set _
X  Y = Σ (X  Y) λ f  weak-equiv f

apply≈ :  {i j} {X : Set i}{Y : Set j}  X  Y  X  Y
apply≈ = proj₁

≈⇒≅ :  {i j} {X : Set i} {Y : Set j}  X  Y  X  Y
≈⇒≅ {X = X}{Y} (f , we) = iso f g iso₁ iso₂
  where
    g : Y  X
    g y = proj₁ (proj₁ (we y))

    iso₁ : (x : X)  g (f x)  x
    iso₁ x = ap proj₁ (proj₂ (we (f x)) (x , refl))

    iso₂ : (y : Y)  f (g y)  y
    iso₂ y = proj₂ (proj₁ (we y))

invert≈ :  {i j} {X : Set i}{Y : Set j}  X  Y  Y  X
invert≈ (_ , we) y = proj₁ (proj₁ (we y))