{-# OPTIONS --without-K #-}
module function.isomorphism.core where
open import level using (_⊔_)
open import equality.core
open import equality.groupoid
open import equality.reasoning
open import function.core
open import sum
open import function.extensionality.core
record _≅_ {i j}(X : Set i)(Y : Set j) : Set (i ⊔ j) where
constructor iso
field
to : X → Y
from : Y → X
iso₁ : (x : X) → from (to x) ≡ x
iso₂ : (y : Y) → to (from y) ≡ y
refl≅ : ∀ {i}{X : Set i} → X ≅ X
refl≅ = iso id id (λ _ → refl) (λ _ → refl)
≡⇒≅ : ∀ {i}{X Y : Set i} → X ≡ Y → X ≅ Y
≡⇒≅ refl = refl≅
sym≅ : ∀ {i j}{X : Set i}{Y : Set j} → X ≅ Y → Y ≅ X
sym≅ (iso f g H K) = iso g f K H
trans≅ : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k}
→ X ≅ Y → Y ≅ Z → X ≅ Z
trans≅ (iso f g H K) (iso f' g' H' K') = record
{ to = f' ∘ f
; from = g ∘ g'
; iso₁ = λ x → cong g (H' (f x)) ⊚ H x
; iso₂ = λ y → cong f' (K (g' y)) ⊚ K' y }
module ≅-Reasoning where
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≅⟨_⟩_
infixr 2 _≡⟨_⟩_
infix 1 begin_
data _IsRelatedTo_ {i j}(x : Set i)(y : Set j) : Set (i ⊔ j) where
relTo : x ≅ y → x IsRelatedTo y
begin_ : ∀ {i j}{X : Set i}{Y : Set j} → X IsRelatedTo Y → X ≅ Y
begin relTo p = p
_≅⟨_⟩_ : ∀ {i j k} (X : Set i) {Y : Set j}{Z : Set k}
→ X ≅ Y → Y IsRelatedTo Z → X IsRelatedTo Z
_ ≅⟨ p ⟩ relTo q = relTo (trans≅ p q)
_≡⟨_⟩_ : ∀ {i j} (X : Set i) {Y : Set i} {Z : Set j}
→ X ≡ Y → Y IsRelatedTo Z → X IsRelatedTo Z
_ ≡⟨ p ⟩ relTo q = relTo (trans≅ (≡⇒≅ p) q)
_∎ : ∀ {i} (X : Set i) → X IsRelatedTo X
_∎ _ = relTo refl≅
private
module Dummy {i j}{X : Set i}{Y : Set j} where
injective : (f : X → Y) → Set _
injective f = (x x' : _) → f x ≡ f x' → x ≡ x'
surjective : (f : X → Y) → Set _
surjective f = (y : Y) → Σ X λ x → f x ≡ y
open _≅_ public using ()
renaming (to to apply ; from to invert)
iso⇒inj : (iso : X ≅ Y) → injective (apply iso)
iso⇒inj f x x' q = (iso₁ x) ⁻¹ ⊚ cong from q ⊚ iso₁ x'
where
open _≅_ f
iso⇒surj : (iso : X ≅ Y) → surjective (apply iso)
iso⇒surj f y = from y , iso₂ y
where
open _≅_ f
inj+surj⇒iso : (f : X → Y) → injective f → surjective f → X ≅ Y
inj+surj⇒iso f inj-f surj-f = iso f g H K
where
g : Y → X
g y = proj₁ (surj-f y)
H : (x : X) → g (f x) ≡ x
H x = inj-f (g (f x)) x (proj₂ (surj-f (f x)))
K : (y : Y) → f (g y) ≡ y
K y = proj₂ (surj-f y)
open Dummy public
_↣_ : (A B : Set) → Set
A ↣ B = Σ (A → B) injective
_∘i_ : {A B C : Set} → (B ↣ C) → (A ↣ B) → (A ↣ C)
(g , p) ∘i (f , q) = g ∘ f , r
where
r : (x x' : _) → g (f x) ≡ g (f x') → x ≡ x'
r x x' s = q x x' (p (f x) (f x') s)
_↠_ : (A B : Set) → Set
A ↠ B = Σ (A → B) surjective