{-# OPTIONS --without-K #-}
module function.extensionality.strong where
open import level
open import sum
open import function.core
open import equality.core
open import function.isomorphism.core
open import function.isomorphism.univalence
open import function.extensionality.core
open import function.extensionality.proof
open import hott.level.core
open import hott.level.closure.core
open import hott.equivalence.core
private
module Dummy {i j}{X : Set i}{Y : X → Set j} where
_~_ : (f g : (x : X) → Y x) → Set (i ⊔ j)
f ~ g = ∀ x → f x ≡ g x
infix 5 _~_
R : (f : (x : X) → Y x) → f ~ f
R f x = refl
iso₁ : {f g : (x : X) → Y x} (p : f ≡ g)
→ funext (funext-inv p) ≡ p
iso₁ {f} refl = funext-id f
iso₂ : (f g : (x : X) → Y x) (h : f ~ g)
→ funext-inv (funext h) ≡ h
iso₂ f g h = subst (λ {(g , h) → funext-inv (funext h) ≡ h})
(e-contr' (g , h))
strong-id
where
E : Set (i ⊔ j)
E = Σ ((x : X) → Y x) λ g → f ~ g
e-contr : contr E
e-contr = retract-level
(λ u → proj₁ ∘' u , proj₂ ∘' u)
(λ {(g , h) x → g x , h x})
(λ {(g , h) → refl})
(Π-contr (λ x → singl-contr (f x)))
e-contr' : (u : E) → (f , R f) ≡ u
e-contr' u = contr⇒prop e-contr (f , R f) u
strong-id : funext-inv (funext (R f)) ≡ R f
strong-id = ap funext-inv (funext-id f)
strong-funext-iso : {f g : (x : X) → Y x}
→ (f ~ g) ≅ (f ≡ g)
strong-funext-iso {f}{g} = iso funext funext-inv (iso₂ f g) iso₁
strong-funext : {f g : (x : X) → Y x} → (f ~ g) ≡ (f ≡ g)
strong-funext = ≅⇒≡ strong-funext-iso
open Dummy public using (strong-funext; strong-funext-iso)