{-# OPTIONS --without-K #-}
module function.extensionality.strong where
open import level
open import sum
open import function.core
open import equality.core
open import function.isomorphism
open import function.extensionality.core
open import function.extensionality.nondep
open import function.extensionality.dependent
open import hott.hlevel.core
open import hott.hlevel.properties
open import hott.weak-equivalence.core
private
module Dummy {i j}{X : Set i}{Y : X → Set j} where
_~_ : (f g : (x : X) → Y x) → Set (i ⊔ j)
f ~ g = ∀ x → f x ≡ g x
infix 5 _~_
R : (f : (x : X) → Y x) → f ~ f
R f x = refl
iso₁ : {f g : (x : X) → Y x} (p : f ≡ g)
→ ext' (ext-inv p) ≡ p
iso₁ {f} refl = ext-id' f
iso₂ : (f g : (x : X) → Y x) (h : f ~ g)
→ ext-inv (ext' h) ≡ h
iso₂ f g h = subst (λ {(g , h) → ext-inv (ext' h) ≡ h})
(e-contr' (g , h))
strong-id
where
E : Set (i ⊔ j)
E = Σ ((x : X) → Y x) λ g → f ~ g
e-contr : contr E
e-contr = retract-hlevel
(λ u → proj₁ ∘ u , proj₂ ∘ u)
(λ {(g , h) x → g x , h x})
(λ {(g , h) → refl})
(Π-contr (λ x → singl-contr (f x)))
e-contr' : (u : E) → (f , R f) ≡ u
e-contr' u = contr⇒prop e-contr (f , R f) u
strong-id : ext-inv (ext' (R f)) ≡ R f
strong-id = cong ext-inv (ext-id' f)
strong-ext-iso : {f g : (x : X) → Y x}
→ (f ~ g) ≅ (f ≡ g)
strong-ext-iso {f}{g} = iso ext' ext-inv (iso₂ f g) iso₁
strong-ext : {f g : (x : X) → Y x} → (f ~ g) ≡ (f ≡ g)
strong-ext = ≅⇒≡ strong-ext-iso
open Dummy public using (strong-ext; strong-ext-iso)